First SSGN Is Introduced To The Media

The USS Ohio (SSGN-726) stops for a personnel boat transfer off the coast of Puget Sound, Wash., last month. Members of the media were transported to the Ohio to see the new transformational capabilities that this submarine now brings to joint forces. Electric Boat completed the conversion of Ohio in December and is engaged in the conversion of three additional SSBNs into SSGNs. These ships will be capable of launching up to 154 Tomahawk cruise missiles, and supporting up to 102 Special Operations Forces (SOF) personnel for short durations or 66 SOF personnel for sustained operations. The three other SSBNs – USS Florida (SSGN-728), USS Michigan (SSGN-727) and USS Georgia (SSGN-729) – will be converted to SSGNs through 2007.

U.S. Navy photo

continued on page 2

USS Ohio Returns To Service As Navy’s First SSGN

The first of four Ohio-class submarines to be converted to a Tactical Trident rejoined the U.S. Navy’s fleet in a Return-To-Service ceremony here earlier this month.

In December, Electric Boat completed its conversion of USS Ohio (SSGN-726) from a ballistic-missile platform to a guided-missile submarine capable of carrying 154 Tomahawk cruise missiles and more than 60 Special Operations Forces (SOF) for extended periods. The company is currently engaged in the conversion of USS Michigan (SSGN-727) at Puget Sound Naval Shipyard, and USS Florida (SSGN-728) and USS Georgia (SSGN-729) at Norfolk Naval Shipyard in Virginia.

“As it became clear our deterrence goals had been met, our Congress authorized the conversion of these four boats to support SOF strikes,” said Adm. Edmund Giambastiani, vice chairman of the Joint Chiefs of Staff and the military’s second highest-ranking officer.

“This platform has truly been a case study in transforming our military capabilities to meet the
future needs of our joint forces,” he continued. “In doing so, the Ohio has proven our concepts are validated as the SSGN prepares for an uncertain future by being on station and providing a forward-deployed presence, adaptability and modularity that are exactly the kind of capabilities the Quadrennial Defense Review calls for,” he said.

Also speaking at the ceremony was Electric Boat President John Casey, who called the SSGN a powerful example of military transformation, with capabilities unmatched by any other ship on the planet.

“SSGN represents more than just Electric Boat’s capability to construct one of the most sophisticated machines on earth. Answering the Navy’s call, we progressed from a PowerPoint slide to finished product in just 39 months, transforming what was the consummate Cold War weapon to a platform uniquely configured for warfare in the 21st century.

“Even though Ohio’s conversion to an SSGN configuration was a first-of-a-kind project, we overcame the unexpected and remained within both schedule and budget. In doing this, we displayed our ability to develop a concept, complete the detailed design, and perform the required manufacturing and construction work. Now, we’re prepared to support SSGN Ohio throughout its working life,” said Casey.

“Electric Boat’s performance on the SSGN conversion program demonstrates clearly that the company and its workforce are national assets that must be sustained for our country’s security,” he said.

Recording The SSGN Story

Brian Kobylarz, who produces many Electric Boat films, videotapes Navy Capt. Dave DiOrio, left, director of the SSGN program office, as he describes the battle management center aboard USS Ohio (SSGN-726) and how it will provide true joint military integration. Ohio is the first SSGN converted from an SSBN and will provide transformational capabilities to joint war fighters.

U.S. Navy photo
EB’s Support Of “Wear Red” Day Is Recognized By American Heart Association

On behalf of the American Heart Association, I would like to offer my thanks and congratulations to everyone at Electric Boat who supported this great cause by wearing red and making a donation.

Through the years, the men and women of Electric Boat have shown time and again that they truly have HEART by raising money that funds lifesaving research and life-changing education. In addition, by wearing red on Feb. 3, you raised the awareness of everyone who saw you that day and hopefully thought about their own heart health. Moving people to recognize the risk factors for cardiovascular disease and stroke, to recognize the warning signs of heart attack and stroke, and to make changes that will help them lead more heart-healthy lives will save more lives than we will ever know.

Thank you again. At Electric Boat you not only design and build the best submarines in the world, but you also save lives every day! Keep up the great work!

With deep appreciation,
Tracy A. Brazelton
Regional Vice President
American Heart Association
Team Successfully Tackles Space Crunch At Graving Docks

Anyone who has worked in EB’s Groton shipyard would agree that storage space is a rare commodity, particularly in and around Graving Docks 1 and 2.

To improve the situation, and to reduce the crane and safety issues that have been occurring as a result of the space crunch at the docks, a dedicated Process Improvement team was established late last year – and it quickly got down to work.

“Our objectives were to improve the usage around the graving docks and establish material laydown areas; improve on best practices and lessons learned; and investigate some new technologies for material handling and storage,” said Lifting & Handling Superintendent Jack Callinan (230), who presented an update on the team’s progress last month. “We still have a couple things to do, but we have much better control now.”

Callinan said the team owes a debt of gratitude to many individuals within the shipyard for the project’s quick success. “It took a lot of help from a lot of different people to get where we are today,” he said, adding the timing of the project couldn’t have been better.

“When the Secretary of the Navy came in recently, we didn’t have to go clean up the docks,” Callinan said. “The docks were ready for him.”

In addition to the cleanup, the project also included the relocation of a few areas, including a smoking area, some fencing and a small parking lot. The end result: Larger, more efficient material laydown areas that are within the reach of the graving dock cranes.

“Before this project, material was being stored all along the dock walls,” explained Lean Six Sigma green belt Mark Homand (459), another member of the Process Improvement team. “The crane walkers had to walk around all the material, so they were having trouble keeping the crane rails clear. It would get messy really quick.

“You had vehicles running up and down the docks, so it was a constant safety hazard also,” he said. “So we decided to find nearby areas where we could place material and equipment for easy access during a job, or easy removal afterward.”

Homand said a follow-on stage of the project will be to reorganize the Hunter Property in the South Yard, which will be used for overflow storage for the docks.

“We’re reorganizing that so that the large equipment and material used in the graving docks has a place to go before and after a job, and in an organized fashion so we can get to it readily,” he said.

Director of Operations Mike Alu (200) praised the team for its work, and then he issued a challenge: to create a system that brings to the graving docks only what’s needed for a given day or week. “Otherwise, you’ll start finding that you’re not going to have a place to put it,” he said.

Callinan quickly replied that the team hasn’t finished yet, and is looking to make additional enhancements like Alu described.

“I keep my garage at home clean, and I want to keep the graving docks clean as well,” Callinan said. Besides Callinan and Homand, the Process Improvement team included Robert Miller (271), Mark Mills (230), John Azzinaro (545), Mark Makoid (252), Bruce Hart (508) and William Newton (615).
As a volunteer judge for the Connecticut Invention Convention, Mark A. Zecco, a program manager in Department 411, said he’d like one of the two-door mailboxes that one grade-school student developed.

“I live on a terrible corner, and standing out there trying to get my mail can be pretty dangerous, but with a mailbox like that I could get it without stepping out into the street,” Zecco said.

But he was most impressed with the contrivance that another young boy came up with to help his grandfather, who had suffered a stroke. Using Bungee Cords and Velcro, the boy came up with a way to secure silverware, plates and cups so his grandfather could eat without dropping any utensils.

“That student’s heart was definitely in the right place,” Zecco said. “He put his time into solving a problem for someone in his family, when he could have been playing games.”

The CIC recently hosted a lunch at Electric Boat to honor 24 EB employees who have given up one or more Saturdays to judge inventions during the competition, open to students in kindergarten to grade 8. Zecco is the most senior of them, having participated for the last eight years.

EB President John P. Casey accepted a citation from the Connecticut General Assembly honoring the volunteers. Five state legislators attended the luncheon as well: Sens. Catherine Cook, R-Mystic, and Andrea Stillman, D-Waterford; and Reps. Betsy Ritter, D-Waterford, Kevin Ryan, D-Montville, and Diana Urban, R-North Stonington.

“Innovation is a large part of what we do as a company, and this program is all about instilling that spirit of enthusiasm and inventiveness in the hearts of our children,” Casey said. “I’m really glad you all find the time to do this.”

EB has turned out everything from the Navy’s first practical submarine, the Holland, to the first welded submarine, the first nuclear submarine, the first ballistic missile submarine, and now USS Virginia, the first warship designed for a post-Cold War environment, Casey said.

“We’re hoping your participation in this program will impart that same sort of inventiveness to a new generation of young people,” he said.

Marty Wood, Assistant Dean for Undergraduate Education at the University of Connecticut, said each year about 650 students are chosen from a pool of about 10,000 budding inventors to advance to the final competition at Gampel. “Judges come away from this thinking this is a wonderful way to spend a Saturday morning.”

The 24 judges from EB are the second-largest company contingent in the state, second only to United Technologies Corp., which sends people from a half-dozen of its divisions in Connecticut, she said.

“You’re part of the creation of a culture, a culture that will appreciate innovation, that will use it wisely,” Kenney said. “They’re going to become educated consumers and hopefully more informed citizens.”

Anyone who would like to volunteer as a 2006 judge can get in touch with the organization by April 15 via the website, www.ctinventionconvention.org, or directly to Charlie.Baumgartner@ge.com.

Apprentice Alumni Association Offers Three Scholarships

The Electric Boat Apprentice Alumni Association (EBAAAA) is offering scholarship awards of $2,000, $1,500 and $1,000 for continuing education.

The awards will be given to the children of EBAAAA on the basis of academic achievement and desire to continue their education.

Applications can be obtained from any member of the EBAAAA board of directors, and must be submitted by April 3. For more information, contact Mark Antrop (ext. 34640) or Andy Peacock (ext. 33024)
It is well recognized that tobacco exposure is the dominant risk factor for lung cancer. Cigarette smoking and second-hand smoke have been definitively established by epidemiologic and preclinical animal experimental data as the primary cause of lung cancer. The percentages of lung cancers estimated to be caused by tobacco smoking in males and females are 90 percent and 78 percent, respectively.

We know that lung cancers have increased in both men and women over the past few decades. Despite improved detection and treatment, this growing incidence has increased the burden on society when viewed from a population perspective. The epidemiological viewpoint is clear that smoking significantly harms a population both in cost of evaluation and treatment as well as lost productivity and life. When compared to non-smokers, the smoking population has a dose-dependent increase in the risk of dying from lung, head and neck, bladder and other cancers. In short, the more you smoke, the more risk you have of getting cancer. On the other hand, if you stop smoking you reduce your risk of cancer. It sounds pretty straightforward, but why is it so?

It has a lot to do with presentation of exposure. The more times you expose your body to carcinogens, the more chance you have of getting cancer. Have you ever wondered what happens to a cell within your body that decides to become cancerous? Scientists have learned some of the “rules,” and although these rules are not hard and fast and are subject to change, we do have a rudimentary understanding of what it takes to change one of your cells into a cancer cell.

One of the reasons that tobacco in smoke form is so effective is that you present the carcinogenic substance deep within your body in vulnerable regions. Once placed onto your lung epithelium, multiple actions take place at the cellular level. In the multi-step carcinogenesis process, cigarette smoke, laden with carcinogenic compounds such as polynuclear aromatic hydrocarbons, the classical carcinogen benzo (a) pyrene, and the nicotine-derived tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butane interact with lung epithelium. Recent experimental evidence has confirmed that the carcinogens that come in contact with the cells of the epithelium cause damage to the cellular DNA. These cigarette carcinogens in smoke drive the multi-step process. The chemicals form what is known as a DNA adduct, which can interact with your lung tissue to initiate cancer.

Let’s look at a simplified process of carcinogenesis. The tissue in your throat and lungs is epithelial tissue which, when exposed on a daily basis over years to the agents in cigarette smoke, initiates a series of steps. Under the right circumstances, lung epithelium will conceptually undergo three phases: initiation, promotion and progression. Initiation is thought of as an irreversible change of the DNA within a cell that arises from an interaction with a carcinogen that is necessary, but not sufficient, for tumor development. If your exposure were to cease at this point, the cell may or may not go on to become a cancer cell. The irreversible changes in DNA are called DNA adducts, which set up individuals for the next potential occurrence in this multi-step process. Promotion is the subsequent process that facilitates tumor development. Unlike initiation, which binds to DNA and alters it, promotion suppresses proteins within the cell and alters the expression and transcription of DNA. Promotion often changes things like membrane receptors that impact cellular growth and differentiation. Promotion typically causes a pre-neoplastic cell that lacks the ability to invade other tissue or metastasize to other parts of the body. The last step, progression, makes possible the genetic changes that turn this cell into a true malignant cell. This cell has many abilities such as sustained cell growth and metastasis.

Carcinogenesis is not this simple, and agents such as cigarette smoke possess
both initiator and promoter qualities, making them “complete carcinogens.” If this wasn’t bad enough, cigarette smoke sets the stage for other carcinogens that may be present in the lung. Inhaled cigarette smoke alone has well over 1,000 compounds.

As I said earlier, this rudimentary construct of multi-step progression is constantly being revised as we acquire more knowledge. Current research suggests the multi-step process is increasingly complex and the evidence blurs the distinction between initiation, promotion and progression. In addition, latency, the time between exposure and initiation may be great. Cancers associated with exposure are now known to take from 10 to 20 years to develop, making identification of the causative agent indeed difficult.

We have learned that when the DNA within cells is altered, this leads to tumor development, which is at least partly due to mutations of proto-oncogene and tumor suppressor genes. A proto-oncogene contains the altered DNA sequences we talked about with initiation. When stimulated by a “complete carcinogen” such as cigarette smoke, this potential alteration becomes an oncogene, which in turn stimulates the cell to transform and proliferate as a potentially neoplastic cell. These genes we have labeled proto-oncogene are necessary for normal cell maturation and differentiation. Those labeled tumor-suppressor genes typically act to regulate cell growth. With inactivation of one of these genes, the cell grows in an unregulated manner.

And if the above were not enough, please consider the following. We have looked at cancer from the perspective of a single cell. What of a group or area of cells? From the perspective of “field carcinogenesis,” we know that individuals exposed to carcinogenic tobacco smoke develop multiple areas of independent neoplastic lesions. We also know that patients developing cancers of the lungs and throat secondary to cigarette smoke also are likely to have multiple premalignant lesions of independent origin within the carcinogen-exposed field.

If the first wave doesn’t get you, the second wave will.

Back at the Kiosk

At this point, I think we’re all in agreement that this information is better presented in “Health Matters,” rather than a cold kiosk. I hope it gets someone thinking about quitting. If you are to believe experts, they tell me that 58 percent of all smokers want to quit. If you’re one of them, then please feel free to see me or one of the providers at the Yard Hospital to discuss your desire to quit. We can help you formulate a plan of action. If you prefer to cease off-campus or have other questions, please call Sonia Garcia at 1-800-848-4747, ext. 8318. She can help you navigate the multiple resources of smoking cessation.

Colors Make Healthy Eating Easier

Have you noticed the new labels in the Groton and Quonset Point cafeterias? These color-coordinated labels are designed to help you make informed choices about healthy food options.

Foods are characterized by the colors green, yellow and red – the same as a traffic light:

Green-light (Go) foods – Eat these foods frequently. They include fresh fruits, non-starchy vegetables, salads with small amounts of low-fat dressings, and fat-free dairy products. Eat baked, broiled or canned skinless chicken, turkey and fish. Fruits and vegetables are good for snacks because they are easy to carry around.

Yellow-light (Slow) foods – Portion size matters with these foods. Don’t have more than five or six small servings each day of starchy vegetables (potatoes, corn and peas), pasta or bread.

Red-light (Whoa) foods – Any food with high fat, sugar or calories belongs on the red-light list. Limit your consumption of the following: cakes, cookies, pies, fatty meats, fast food, fruit juices and pizza. Soda, bottled lemonade and iced tea also are on this list.

Health-care advocate Sonia Garcia can give information on healthy eating and other topics. For an appointment at her Yard Hospital office, call 1-800-848-4747, ext 8318.
The development of an ultralight gas metal arc welding system for shipbuilders marked a key milestone when the system was unveiled at a recent industry meeting here. This new welding system is being developed by a government/industry team comprising the Advanced Technology Institute/Center for Naval Shipbuilding Technology (ATI/CNST) – the government sponsor; the Lincoln Electric Company – the co-sponsor responsible for product development; and EB – which is defining welding-system requirements and evaluating the system throughout its development. EB’s Ultralight team members are Doc Holliday (229), Scott Wardwell (229) and Andrew Stockton (405).

EB has been a major proponent of the development of Ultralight. Beginning in November 2003, the company led a proposal development effort that resulted in $1.7 million of funding for Ultralight from CNST and Lincoln Electric. The prototype Ultralight welding system is now under evaluation at the EB Welding Engineering Laboratory. This evaluation is scheduled for completion in September.

At 45 pounds, the Ultralight welding system will perform many of the welding operations currently done in the shipyard with 175 pounds of equipment, thus eliminating many handling requirements. In addition to being portable, Ultralight will provide a greater degree of shipyard safety because it operates on 220-volt single-phase power rather than the 440-volt three-phase power required by welding systems now in use.

Holliday, the Ultralight project lead for Operations, has high hopes for the new welding system. “Progress made by Lincoln Electric has exceeded our expectations,” he said. “Lincoln has worked closely with EB in implementing our requirements and supporting testing in the EB Welding Engineering Laboratory. Given Lincoln’s performance so far, I feel confident that Ultralight will meet or exceed the demanding requirements of the shipyard.”

To further ensure the acceptance of Ultralight by the shipyard, the EB Ultralight team is also collaborating with Lenco, a producer of welding supplies, on the development of a light agile torch to use with the new welding system. This evaluation of a new torch design is being led by Wardwell, who praised Lenco’s support. “Lenco has offered to modify one of their production torches to meet our requirements. We expect that this new lightweight flexible head torch will be an excellent match for the Ultralight welding system.”

EB Team Helps Unveil Ultralight Welding System At Ship Tech 2006

PANAMA CITY, Fla. The development of an ultralight gas metal arc welding system for shipbuilders marked a key milestone when the system was unveiled at a recent industry meeting here.

This new welding system is being developed by a government/industry team comprising the Advanced Technology Institute/Center for Naval Shipbuilding Technology (ATI/CNST) – the government sponsor; the Lincoln Electric Company – the co-sponsor responsible for product development; and EB – which is defining welding-system requirements and evaluating the system throughout its development. EB’s Ultralight team members are Doc Holliday (229), Scott Wardwell (229) and Andrew Stockton (405).

EB has been a major proponent of the development of Ultralight. Beginning in November 2003, the company led a proposal development effort that resulted in $1.7 million of funding for Ultralight from CNST and Lincoln Electric. The prototype Ultralight welding system is now under evaluation at the EB Welding Engineering Laboratory. This evaluation is scheduled for completion in September.

At 45 pounds, the Ultralight welding system will perform many of the welding operations currently done in the shipyard with 175 pounds of equipment, thus eliminating many handling requirements. In addition to being portable, Ultralight will provide a greater degree of shipyard safety because it operates on 220-volt single-phase power rather than the 440-volt three-phase power required by welding systems now in use.

Holliday, the Ultralight project lead for Operations, has high hopes for the new welding system. “Progress made by Lincoln Electric has exceeded our expectations,” he said. “Lincoln has worked closely with EB in implementing our requirements and supporting testing in the EB Welding Engineering Laboratory. Given Lincoln’s performance so far, I feel confident that Ultralight will meet or exceed the demanding requirements of the shipyard.”

To further ensure the acceptance of Ultralight by the shipyard, the EB Ultralight team is also collaborating with Lenco, a producer of welding supplies, on the development of a light agile torch to use with the new welding system. This evaluation of a new torch design is being led by Wardwell, who praised Lenco’s support. “Lenco has offered to modify one of their production torches to meet our requirements. We expect that this new lightweight flexible head torch will be an excellent match for the Ultralight welding system.”

Members of the EB team that helped develop a new welding system for the shipbuilding industry stand behind a mockup display at the recent Ship Tech 2006 event in Panama City, Fla. From left are Doc Holliday (229), Andrew Stockton (405) and Scott Wardwell (229). At right is Kevin Carpenter, representing the Advanced Technology Institute/Center for Naval Shipbuilding Technology.
Electric Boat Is Awarded $9 Million For Submarine Support Work

Electric Boat has received a $9 million modification to an existing contract for submarine modernization and related work at the Naval Submarine Base in Groton.

Initially awarded in October 2001, the overall contract could be worth $142 million over five years if all options are exercised and funded.

Under the terms of the modification, Electric Boat will continue to perform non-nuclear submarine modernization and repair services at the Naval Submarine Support Facility at the Base. These services include intermediate overhaul, repair and modernization activities in support of submarines and the Shippingport floating drydock, as well as support and service craft.

NASSCO Lands $317M Contract To Build Ninth T-AKE Dry Cargo / Ammunition Ship

General Dynamics NASSCO has received a contract option from the U.S. Navy to build an additional ship under the T-AKE program, a new class of combat logistics force ships. The $317 million contract brings the total number of T-AKE ships awarded to NASSCO to nine, and the total contract value to $2.8 billion. Options for three additional T-AKE ships remain available under the existing contract.

Exercise of this option brings NASSCO’s backlog to 10 ships, including the nine T-AKEs and the fourth of four double-hull oil tankers being built for BP Shipping Company of Alaska.

The first T-AKE, the USNS Lewis and Clark, was launched in May 2005 and delivery is scheduled for the second quarter of this year. The second T-AKE, to be named the USNS Sacagawea, is now in full-rate production and will be launched May 23. Construction on the third T-AKE, to be named the USNS Alan Shepard in honor of the first American in space, began last September.

The T-AKE is a dry cargo/ammunition ship that will be operated by the Military Sealift Command, providing logistic support from sources of supply either in port or at sea. The ships will transfer cargo – ammunition, food, fuel, repair parts, and expendable supplies and material – to naval forces at sea.

The T-AKEs are 689 feet in length and 105.6 feet in beam, with a design draft of 29.9 feet. The ships can carry almost 7,000 metric tons of dry cargo and ammunition and 23,500 barrels of marine diesel fuel. The T-AKEs are the first modern Navy ships to combine proven international marine technologies such as an integrated electric-drive propulsion system with commercial design features that will minimize their cost of operation and maintenance over their expected 40-year life.
AUTOS/TRUCKS
DODGE DAKOTA SPORT 1999. 105k miles, 5-spd., 4WD, V-8, with tow hitch/harness, locking fiberglass tonneau, all amenities, new tires. Asking $9,500. 460-2086.
GRAND PRIX 2000. V-6, 3.1, 4-dr, $3,500. 822-9614.

BOATS
MARINE VOLVO. GM 350/5.7 duo prop. New parts – risers, zincs, water pump, starter, alternator, anchors, lines, two pedestal seats with cushions, bumpers, life jackets, fishing tackle. 572-0655.
SEA-DOO JET SKI 2003. 3-seater, 85HP , used in fresh water only, 20 hours of use, includes trailer and cover, excellent condition. $4,800 OBO. 401-206-9225, leave message.

FURNITURE
DOUBLE BED with new mattress & dresser with mirror. Good condition. $100. You pick up. 401-348-6769.
QUEEN-SIZE mattress, box spring and headboard. Good condition. $70 OBO. 535-4647.
WICKER chaise lounge. Natural wicker with princess back. Removable dark-green cushions. $150 OBO. 401-885-5811.

MISCELLANEOUS
AMERICAN GIRL DOLL CLOTHES & furniture. 1959 Ken doll, wooden doll’s cradle, new ballerina porcelain doll, Crissy doll, Elvis Presley doll, Mickey Mouse earrings, children’s books. 401-596-5788.
HAVILAND CHINA. 4 place settings, 28 pieces. Collectible Fostoria glassware, Wolfschmidt Vodka framed mirror, Star Wars collectibles, 5-section ceramic Lazy Susan, demitasse cups & saucers, new infant’s blanket. 535-4647.
HORSEBACK RIDING PANTS. On Course cotton naturals (cotton/lycra), padded full seat and inner thigh, size 38. Colors: tan, black and gray. $15 each. 884-6105, leave message.

REAL ESTATE / RENTALS
APT FOR RENT. West Warwick, 2br/1ba. Great location close to Quonset. Heat, hot water, cable TV, 2-car parking included. $895 per month. First month and security required. 401-388-6420.
CAPE COD RENTAL. Four bedroom, well-kept Cape in Falmouth, Mass. Great location for all local activities and launch pad to the rest of Cape. $1,000/wk. 401-596-5788.
HOUSE FOR RENT. Half of duplex – Westerly. Quiet neighborhood. 3 bedroom/2 baths, gas heat, off-street parking with semi-private yard. Close to schools and I-95. Walking distance to gym. $1,000 plus security. 401-741-3342.
NICE FIRST FLOOR APT. 1 br, newly carpeted, walk to L&M, off-street parking, non-smoker, no pets. $700 + utilities. One month security. 442-4050 after 6 PM.

REAL ESTATE / SALES
LAND LOTS. Cape Coral, Fla. One double lot, one across from water, one on water. 401-348-6769.
EB donates $10,000 To Dolphin Scholarship Fund

Electric Boat has donated $10,000 to the Dolphin Scholarship Foundation, an organization that supports children of current and former submariners. EB President John Casey presented the check to Mrs. Kristin Munns, president of the scholarship foundation and the wife of Vice Adm. Charles L. Munns, Commander – Naval Submarine Forces. Since it was established in 1961, the foundation has awarded more than $5.8 million in scholarships to nearly 900 students pursuing their undergraduate college degrees.